

Cognitive Security Institute

(*v*) Østfold University College

A Neurocentric Systems Approach for Classifying the Goals and Methods of Cognitive Warfare

Nov. 14th 2023

Torvald F. Ask, Ricardo G. Lugo, Stefan Sütterlin, Matthew Canham, Daniel Hermansen, Benjamin J. Knox

Prof. Dr. Stefan Sütterlin

Torvald Ask

Dr. Ricardo Lugo

Dr. Benjamin Knox

Cognitive Security Institute

IES LAWLER SOULCATCHER OPERA JAMES LAWLER

https://www.youtube.com/@cognitivesecurityinstitute

DNTNU

Norwegian University of Science and Technology

(*II*) Østfold University College

Albstadt-Sigmaringen University

ERICK MIYARES

Overview

- Briefly: key characteristics of CogWar
- Neural systems
- The UnCODE system: five classes of goals
- Methods for reaching CogWar goals
- Conclusion

Note:

 Not saying what the current capabilities are; how to think about CogWar goals and methods

NTNU | Norwegian University of Science and Technology

Key Characteristics of CogWar

• System of systems and domain fusion (Claverie & du Cluzel, 2022; Le

Guyader, 2022; Masakowski & Blatny, 2023)

- Targets reached through means spanning cyber space and meat space.
- Several methods can be used to reach the same CogWar goal
- Everyone is a stakeholder (du Cluzel, 2020)
- The goal is related to cognition = influencing or monitoring the system where cognition occurs

The Need for a Bottom-Up Approach to CogWar

- Capture underlying principles
- Avoid misconceptions (e.g., mind-body dualism)
- Modular (target, time, and domain agnostic)
 - Include non-human cognition (Ask & Knox, 2023; Flemisch, 2023)

Considerations

- Conducive for common language
- Be actionable to decision-makers

Underlying principles: Neural systems

• A system consisting of neural components: fractal-ish

(Sub)cellular

Group of neurons

Group of organizations /

Nation

Organizations

Group of Nations

Non-human

Norwegian University of Science and Technology

Underlying principles

- CogWar goals are based on cognition.
- Cognition occurs in a neural system.
- A neural system is a physical system that processes inputs and produces outputs.
- A neural system changes input-output activity by changing its physical state.
- If a Warfare goal is not concerned with changing the input-output activity (= changing the physical state) of a neural system, it is not a CogWar goal.
- Note: Does not distinguish between motor activity, problem solving, perception, decisionmaking, sleep-wake cycles, etc.

Østfold University College

The UnCODE system: Five classes of goals

- 5 goals based on input-output activity
- Unplug, Corrupt, disOrganize, Diagnose, Enhance (UnCODE)
 - **1. Un**plug: eliminate input-output ability
 - 2. Corrupt: degrade input-output
 - 3. dis**O**rganize: bias input-output
 - **4. D**iagnose: monitor/understand input-output
 - 5. Enhance: enhance input-output ability

The UnCODE system: Five classes of goals

Neural Systems = Cognitive Assets

• Neural systems / Cognitive assets view → Access privilege and intrusion perspective

"The essence of an intrusion is that the aggressor must develop a payload to breach a trusted boundary, establish a presence inside a trusted environment, and from that presence, take actions towards their objectives, be they moving laterally inside the environment or violating the confidentiality, integrity, or availability of a system in the environment." (Hutchins et al., 2011)

- Information (payload) → change narrative → change perceptions → get military strategist fired (availability)
- disOrganize \rightarrow Unplug goal.

Methods for reaching CogWar goals

• Influence/monitor neural system \rightarrow how to get access to the neural system?

Access to neural system

• Direct access or indirect access

Mode of access

- Direct: privileged or brute force
- Indirect: directed/not directed + neuroergonomic/not neuroergonomic

Methods for reaching CogWar goals

Access to neural system	Mode of access	Description	Example
Direct access	Privileged	Directly interfacing with nervous system, consent from target	<i>Enhance</i> : drugs/virus/brain stimulation to improve performance. <i>Diagnose</i> : electrode implant recordings. Metacognition.
	Brute-force	Directly interfacing with nervous system, without consent from target	<i>Unplug</i> : kinetic force to kill brain. <i>disOrganize</i> : viruses that alter brain function.
Indirect access	Directed and neuroergonomic	Designed for specific target. Based on neural system knowledge	Unplug: Use LLM to identify targets at risk for suicide then convince them to commit suicide
	Not directed, neuroergonomic	Not designed for specific target. Based on neural system knowledge	<i>Corrupt, disOrganize</i> : Addictive apps that hijack dopamine system and bias attention. Increase noise in information space.
	Directed, not neuroergonomic	Designed for specific target. Not based on neural system knowledge	<i>disOrganize:</i> Tailoring a disinformation campaign to a specific group
	Not directed, not neuroergonomic	Not designed for specific target. Not based on neural system knowledge	<i>disOrganize</i> : Propaganda campaign aiming to proliferate a specific narrative

Norwegian University of Science and Technology

Methods for reaching CogWar goals

- Adversaries may use different methods to reach same goals
- Varying level of sophistication and time scale considered
 - Short time-window → Directaccess, large effect size, short latency
 - Hacking neuroprosthetics

Norwegian University of

Science and Technology

Conclusions

- The UnCODE system captures underlying neuroscience principles
- Species, time, and domain agnostic
- Simple and actionable
- Allows for common language

NTNU | Norwegian University of Science and Technology

References

- Ask T. F., Knox B. J., Cognitive Warfare and the Human Domain: Appreciating the perspective that the trajectories of neuroscience and human evolution place Cognitive Warfare at odds with ideas of a Human Domain. In Y. R. Masakowski & J. M. Blatny (eds) Mitigating and Responding to Cognitive Warfare. NATO STO Technical Report RDP STO-TR-HFM-ET-356, 13 1-5 (2023). Doi: 10.14339/STO-TR-HFM-ET-356.
- Claverie B., du Cluzel F., "Cognitive Warfare": The advent of the concept of "cognitics" in the field of warfare. In B. Claverie, B. Prébot, N. Buchler and F. Du Cluzel (eds.).
 Cognitive Warfare: The Future of Cognitive Dominance. NATO Collaboration Support Office, 2 1-8 (Neuilly-sur-Seine Cedex, France, 2022).
- Du Cluzel F., Cognitive Warfare. NATO ACT innovation Hub, 1-45 (2020).
- Flemisch F., Human-machine teaming towards a holistic understanding of Cognitive Warfare. In Y. R. Masakowski, J. M. Blatny (eds.) Mitigating and Responding to Cognitive Warfare. NATO STO Technical Report RDP STO-TR-HFM-ET-356, 9 1-12 (2023). https://doi.org/10.14339/STO-TR-HFM-ET-356
- Hutchins E., Cloppert M. J., Amin R. M., Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion Kill Chains. Lockheed Martin Corporation (2010).
- Le Guyader H., Cognitive domain: A sixth domain of operations? In B. Claverie, B. Prébot, N. Buchler and F. Du Cluzel (eds.) Cognitive Warfare: The Future of Cognitive Dominance. NATO Collaboration Support Office, 3 1-6 (Neuilly-sur-Seine Cedex, France, 2022).
- Masakowski Y. R., Blatny J. M., Mitigating and Responding to Cognitive Warfare. NATO STO Technical Report RDP STO-TR-HFM-ET-356, (2023). Doi: 10.14339/STO-TR-HFM-ET-356.

Norwegian University of Science and Technology

